Effects of harvesting of increasing intensities on genetic diversity and population structure of white spruce
نویسندگان
چکیده
Forest harvesting of increasing intensities is expected to have intensifying impacts on the genetic diversity and population structure of postharvest naturally regenerated stands by affecting the magnitude of evolutionary processes, such as genetic drift, gene flow, mating system, and selection. We have tested this hypothesis for the first time by employing widely distributed boreal white spruce (Picea glauca) as a model and controlled, replicated experimental harvesting and regeneration experiment at the EMEND project site (http://www.emendproject.org). We used two approaches. First, genetic diversity and population structure of postharvest natural regeneration after five harvesting treatments (green tree retention of 75%, 50%, 20%, and 10%, and clearcut) were assessed and compared with those of the unharvested control (pristine preharvest old-growth) in two replicates each of conifer-dominated (CD) and mixed-wood (MW) forest, using 10 (six EST (expressed sequence tag) and four genomic) microsatellite markers. Second, genetic diversity and population structure of preharvest old-growth were compared with those of postharvest natural regeneration after five harvesting treatments in the same treatment blocks in one replicate each of CD and MW forests. Contrary to our expectations, genetic diversity, inbreeding levels, and population genetic structure were similar between unharvested control or preharvest old-growth and postharvest natural regeneration after five harvesting treatments, with clearcut showing no negative genetic impacts. The potential effects of genetic drift and inbreeding resulting from harvesting bottlenecks were counterbalanced by predominantly outcrossing mating system and high gene flow from the residual and/or surrounding white spruce. CD and MW forests responded similarly to harvesting of increasing intensities. Simulated data for 10, 50, and 100 microsatellite markers showed the same results as obtained empirically from 10 microsatellite markers. Similar patterns of genetic diversity and population structure were observed for EST and genomic microsatellites. In conclusion, harvesting of increasing intensities did not show any significant negative impact on genetic diversity, population structure, and evolutionary potential of white spruce in CD and MW forests. Our first of its kind of study addresses the broad central forest management question how forest harvesting and regeneration practices can best maintain genetic biodiversity and ecosystem integrity.
منابع مشابه
Scanning SNPs from a large set of expressed genes to assess the impact of artificial selection on the undomesticated genetic diversity of white spruce
A scan involving 1134 single-nucleotide polymorphisms (SNPs) from 709 expressed genes was used to assess the potential impact of artificial selection for height growth on the genetic diversity of white spruce. Two case populations of different sizes simulating different family selection intensities (K = 13% and 5%, respectively) were delineated from the Quebec breeding program. Their genetic di...
متن کاملAn Investigation on Population Structure and Inbreeding of Sangsari Sheep
The aim of this study was to describe inbreeding and population structure in Sangsari sheep breeding station. For this reason, data from 7028 Sangsari sheep which were collected during 1987-2014 in Sangsari sheep breeding station located near to Damghan city, Semnan province were used. Lambs born during 2010-2014 were considered as reference population. The genetic structure analysis of the pop...
متن کاملPopulation genetic structure of the white sardine, Sardinella albella, in the Persian Gulf and Sea of Oman by analysis of mitochondrial control region
Several studies on the white sardine: Sardinella albella, have focused on the identification of stock composition and behavior. In this study population genetic structure and historical demography of S. albella along the cost of the Persian Gulf and Sea of Oman were investigated with a 500-bp segment of mt-DNA control region. In total 40 samples were collected from 3 locations: Jask in Sea of O...
متن کاملGenetic diversity analysis and population structure of some Iranian Fenugreek (Trigonella foenum-graecum L.) landraces using SRAP Markers
Fenugreek is one of the important edible and medicinal vegetables that have a long history of cultivation and consumption. Characterize the extent of the genetic diversity among landraces will provide a good context for future breeding programs and genetic resource preservation. Genetic diversity and population structure of 88 individuals of eight landraces of Iranian fenugreek evaluated based ...
متن کاملGenetic Diversity and Population Structure of Liza klunzingeri from the Northern Persian Gulf Based on AFLP Analysis
The main purpose of this study was to investigate the genetic diversity and population structure of Liza klunzingeri in two regions of the Persian Gulf. In this study, the amplified fragment length polymorphism (AFLP) was employed to analyze population genetic diversity between two populations (Ziyarat & Hendijan). Seven primer combinations (E-AAG/M-CTA, E-ACT/ M-CAA, E-ACT/ M-CTA, E-AAG/M-CTG,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2013